A Hybrid Heuristic Dimensionality Reduction Methods for Classifying Malaria Vector Gene Expression Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Dimensionality Reduction Methods for Classifying Gene and Protein Expression Datasets

The recent explosion in availability of gene and protein expression data for cancer detection has necessitated the development of sophisticated machine learning tools for high dimensional data analysis. Previous attempts at gene expression analysis have typically used a linear dimensionality reduction method such as Principal Components Analysis (PCA). Linear dimensionality reduction methods do...

متن کامل

Hyperspectral Data Dimensionality Reduction Using Hybrid Approach

Hyperspectral data contain a large volume of information. This abundance of data is hard to exploit due to high computational cost involved in processing this data. Dimensionality reduction deals with transforming high dimensional data in to lower dimensional space without losing significance of the High dimensional data. In this paper, a new methodology has been proposed that is based on exist...

متن کامل

Evaluating methods for classifying expression data.

An attractive application of expression technologies is to predict drug efficacy or safety using expression data of biomarkers. To evaluate the performance of various classification methods for building predictive models, we applied these methods on six expression datasets. These datasets were from studies using microarray technologies and had either two or more classes. From each of the origin...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Combination of the Manifold Dimensionality Reduction Methods with Least Squares Support vector machines for Classifying the Species of Sorghum Seeds

This study was carried out for rapid and noninvasive determination of the class of sorghum species by using the manifold dimensionality reduction (MDR) method and the nonlinear regression method of least squares support vector machines (LS-SVM) combing with the mid-infrared spectroscopy (MIRS) techniques. The methods of Durbin and Run test of augmented partial residual plot (APaRP) were perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3029234